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A B S T R A C T   

Conventional techniques for extracting bathymetric soundings from LiDAR point clouds are at best semi- 
automated and require considerable manual effort. An algorithm that couples a widely used sonar data pro
cessing method with a newly developed machine-learning(ML)-based algorithm was evaluated for accuracy and 
potential operationalisation. Data representing an operationally realistic range of environmental and data con
ditions comprised 103 500 m-by-500 m data tiles for method development/calibration and 20 tiles for validation 
located in the Florida Keys. Tiles are processed individually to classify each LiDAR pulse return (“sounding” in 
hydrographic terminology) as bathymetry or not. Compared to a reference classification an average agreement of 
about 90% was produced for the calibration and validation data sets, and accuracy varied depending on ocean 
bottom and data conditions. The average false negative rate – the most important metric in hydrographic 
mapping – was about 5%. Processing time for tiles containing the average number of soundings (seven million) 
on a desktop computer was approximately 100 min. The algorithm does not require in situ ground-“truth” data 
for training or calibration, although its adaptation to other geographic and data conditions might require data- 
guided adjustment of ML tuning parameters.   

1. Introduction 

The capture of LiDAR point clouds from airborne platforms and 
associated data volumes continue to grow. Accordingly, the need to 
replace processing methods reliant on manual input with fully auto
mated approaches is increasing. A familiar example is the processing of 
LiDAR data to produce terrestrial digital elevation/terrain models 
(DEMs/DTMs) (e.g., Xiangyun and Yi 2016, Wang et al. 2017, Zhang 
et al. 2020). Producing “underwater DEMs” – i.e., mapping bathymetry – 
is a natural extension of such work particularly for shallower navigable 
areas. However, mapping bathymetry using LiDAR is less explored than 
terrestrial DTM production. It also presents different challenges such as 
the impacts of sea surface roughness on light reflectance and depth- 
related reduction in light penetration. 

LiDAR point clouds comprise three-dimensional {x, y, z} coordinates 
of individual pulse returns and associated metadata. (See also .las file 

data standards in ASPRS (2013)). Processing pulse returns for bathym
etry means separating those that represent the ocean floor from those 
representing the ocean surface or noise in the water column. Artificial 
intelligence (AI) and machine learning (ML) approaches are among 
recent methods that have been explored to “de-noise” or “filter” LiDAR 
point clouds for various applications – e.g., analysing statistical char
acteristics of clusters developed after an initial principal components 
analysis (PCA) (Duan et al. 2021), coupling auto-labeling with con
volutional neural networks (CNNs) (Henzler et al. 2020), using a sta
tistical “cell histogram” outlier removal approach (Carrilho et al. 2018), 
or extending a two-dimensional cell histogram approach to three- 
dimensional “voxels” (Yong-hua et al. 2017). 

Improving filtering of acoustic/sonar point cloud filtering to produce 
maps/charts that meet international standards (IHO 2020) is an ongoing 
activity of the hydrographic mapping community. A recent example is a 
voxel-based approach underpinned by CNNs for which a 97% Bathy/ 

Abbreviations: AI, Artificial Intelligence; BDI, Bathymetric Depth Interval; CHRT, Cube with Hierarchical Resolution Techniques (Calder and Rice 2017); CI, 
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NotBathy classification accuracy was reported (Stephens et al. 2019). 
(See also the review article and associated bibliography of Le Deunf et al. 
2020.) Such methods are not readily adapted to LiDAR point clouds, 
however, due to factors such as a lower signal-to-noise ratio of LiDAR 
data. Yet the value of operationally viable methods for filtering LiDAR 
point clouds is immense given the inability of sonar-equipped ships to 
operate in “shallow-water” – depths less than maximum LiDAR depth 
penetration (17 m in this study although LiDAR penetration to depths of 
80 m has been reported (Parker and Sinclair 2012)). 

An early approach for shallow-water bathymetric LiDAR process
ing combined LiDAR point clouds and multispectral scanner data 
(Lyzenga 1985). More recently other methods have been explored 
including interpolation (kriging) for mapping underwater archaeo
logical structures (Doneus et al. 2013, 2015), geomorphometric 
analysis (Yang et al. 2020), and ML modelling (extreme gradient 
boosting modelling (Friedman 2001)) of sounding metadata 
(Lowell et al. 2020). 

Such proof-of-concept research has understandably focused on 
methodological accuracy. Consequently, three important operational 
issues have received limited attention: methodology robustness, pro
cessing time, and the need for in situ training/calibration data. In 
particular, the need for independent in situ data increases processing 
costs, decreases efficiency, and limits the use of LiDAR point cloud data 
in remote or inaccessible areas. (Exceptions to methods requiring a priori 
calibration data for LiDAR and shallow-water bathymetry are Yang et al. 
(2020), Lowell and Calder (2021), and Ranndal et al. 2021 for ICESat-2 
data.) 

This article presents a new method for processing LiDAR point clouds 
for shallow-water bathymetry that does not require an in situ calibration 
data set and documents its performance relative to operational consid
erations. The fundamental motivation of this research is to bridge the 
gap that exists between proof-of-concept and operational LiDAR point 
cloud processing methodologies. 

2. Study area and data 

LiDAR data were acquired by the United States National Oceanic and 
Atmospheric Administration (NOAA) from April 22 to-26 in 2016 in the 
vicinity of Key West, Florida (United States) (Fig. 1a). Data were ac
quired using a Riegel™ VQ-880-G instrument from a nominal altitude of 
400 m and speed of 200 km hour-1. The sensor emits green and near- 
infrared pulses (532 nm and 1064 nm, respectively). The pulse fre
quency of 45,000 s-1 results in a point density of about 10 soundings m− 1 

for a single flight path. Acquired originally in generally north–south 
overlapping swaths, data were subsequently “cut” into 1620 500-m-by- 
500-m tiles. Each was processed by NOAA to classify soundings as 
Bathy/NotBathy using a multi-stage processing workflow. Primary pro
cessing filters point clouds using algorithms based on principles 
described in, for example, Nagle and Wright (2016). Secondary pro
cessing relies on computer-aided manual editing to separate terrestrial 
areas and ocean surface soundings from soundings representing ba
thymetry. NOAA determined that approximately 500 tiles were located 
in areas whose depth exceeded LiDAR penetration; these were removed 
from further consideration. Note that this means that an initial step in 
operationalizing the algorithm presented is the elimination of “too 
deep” tiles; this might be achieved by, for example, analysing sounding 
depth frequency distributions. 

The remaining tiles cover a range of ocean conditions likely to be 
present in operational LiDAR bathymetric surveys – varying substrate, 
working harbors, and a range of depths. They also represent a range of 
data conditions (Fig. 1b, c, and d) – e.g., varying data densities, partial 
absence of soundings in areas where depth exceeded LiDAR penetration 
capabilities (about 17 m in this study). Randomly selected for analysis 
were 103 tiles – 100 in addition to the original four tiles with one tile 
belonging to both sets – (Fig. 1). These tiles were (subjectively) judged to 
sufficiently address the range of ocean and data conditions present. 

Fig. 1. a. Centres of available LiDAR data tiles overlain on GoogleEarth™ imagery. Purple dots indicate centres of the 103 tiles analysed. The Key West airport is 
visible in the centre-east (approximately 24.57oN / 81.70oW). Frequency distribution of tiles by b. total soundings, c. number of NOAA-classified Bathy soundings, 
and d. percent of soundings NOAA identified as Bathy. 
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3. Methods 

The classifier (“CHRT-ML” for reasons that will be explained) 
evolved from the unsupervised metadata-based classifier described in 
Lowell and Calder (2021) that combined ML analysis of LiDAR sounding 
metadata with a density-based processing method. An average global 
classification accuracy of 93% (minimum of 84%/maximum of 99.99%) 
was reported for four data tiles of varying depth compared to the NOAA 
Bathy/NotBathy reference classification. However, expansion of the 
method to additional tiles indicated two major difficulties:  

1. Speed: Processing time for tiles with seven million soundings – the 
average for tiles having Bathy soundings – was approximately 15 h 
on a desktop computer with an Intel® Xeon® W-2135 CPU @ 3.70 
GHz, 3696 Mhz Processer and 32 Gb of RAM.  

2. Lack of robustness primarily due to the presence of multiple distinct 
depth tiers on some tiles due to shallow coral reefs and/or areas cut 
by deeper channels as illustrated in Fig. 2. 

The foundation of the new methodology described in this article and 
the original Lowell and Calder (2021) approach is the density-based 
Cube with Hierarchical Resolution Techniques (CHRT) algorithm 
(Calder and Rice 2017) that is widely employed operationally for sonar 
data. CHRT establishes a grid of “estimation nodes” (ENs) across an area 
at a spacing determined by the average sounding density. For each EN, 
soundings that are within half the distance to a diagonally contiguous 

EN – i.e., the radius that encloses an entire EN “pixel” (Fig. 3) – are 
extracted and progressively “ingested.” The first sounding defines the 
initial depth “hypothesis” for the EN. Subsequent soundings ingested 
create a new hypothesis if their depths are statistically “too far” from the 
mean depth of existing hypotheses. Otherwise each is assigned to its 
closest (by depth) existing hypothesis. Disambiguation rules then iden
tify the most likely depth (MLD) of the EN. This approach, whether 
applied to sonar or LiDAR data, essentially converts a set of geograph
ically proximal soundings to the equivalent of a LiDAR waveform. In the 
production of terrestrial DEMs, the waveform is analysed to identify the 

Fig. 2. Illustration of lack of robustness in original density-based/ML hybrid classifier described in Lowell and Calder (2021). a. GoogleEarth™ imagery. b. NOAA 
reference classification Bathy soundings (blue). c. Bathy soundings from the original classifier. d. Bathy false negatives (red) and false positives (purple). (For Fig. 2b 
and c, a random sub-sample of soundings is displayed to improve interpretability.) 

Fig. 3. Schematic for Estimation Nodes (ENs) for CHRT.  
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“hypothesis” representing the ground rather than trees. Equivalently, for 
sonar or LiDAR bathymetric soundings, the goal is to identify the ocean 
bottom. 

The MLD for an EN does not necessarily represent ocean depth. In the 
original Lowell and Calder (2021) method, the MLDs of the ENs were 
filtered and classified as Bathy/NotBathy using a workflow comprised of 
outlier screening, 2-cluster k-means clustering (Forgy 1965), and 
extreme gradient boosting modelling. When applied to the 103 tiles 
randomly sampled herein, the method’s lack of robustness became 
apparent, and a new ML component was developed (hence the algorithm 
name “CHRT-ML”). 

Inherent in CHRT-ML are a number of tuning parameters (Table 1). 
Note that neither CHRT-ML nor its tuning parameters are “calibrated” 
using in situ data and numerical optimization of a global loss function 
using methods such as gradient descent (Curry 1944). Instead the tuning 
parameter values (Table 1) were determined by selecting a set of values, 
examining the results across all tiles and tiles, adjusting various values, 
re-examining results, etc. The sensitivity of CHRT-ML to tuning pa
rameters was also determined via this process. 

CHRT-ML processing begins with CHRT identifying the MLD for each 
EN. A two-stage outlier screening/filtering is then applied to the MLDs:  

1. Gross: Removal of all ENs whose MLD is 3 m above or 20 m below 
mean sea level (MSL).  

2. Refined: Calculation of Mahalanobis (Mahalanobis 1936) distance 
based on a variety of EN-related variables and elimination of ENs 
whose Mahalanobis distance exceeds the limits of the 99.9% confi
dence interval (CI). 

Using the ENs retained, unsupervised 3-cluster k-means clustering is 
performed using two variables – the MLD and the average depth of the 
non-MLD hypotheses. A set of Bathymetric Depth Interval (BDI) rules is 
then applied to the characteristics of the clusters to define the BDI for a 
tile. A gaussian distribution of ENs in each cluster is assumed and the 
clusters are ordered by relative mean MLD depth – shallow, mid-depth, 
deep. 

The deeper BDI limit is always defined as the lower limit of the 
99.9% MLD CI of the deep cluster plus 1.0 m; adding 1.0 m was found to 
improve the Bathy/NotBathy classification of deeper geographically 
isolated Bathy soundings. 

The shallower BDI limit is determined by “BDI rules” formulated as a 
decision-tree (Fig. 4). Initially it was assumed that the shallowest cluster 
would define the ocean surface, and the mid-depth and deepest clusters 

would define bathymetry. However, cluster characteristics indicated 
complex interactions among depth, geomorphometry, and the propor
tion of MLDs at different depths and other data characteristics. The BDI 
rules were thus defined subjectively based on these complex interactions 
and the ability to discern a reasonable geophysical or clustering meth
odology reason. The resulting BDI rules determine if MLDs representing 
bathymetry are present in one, two, or all three clusters and define the 
shallower BDI limit accordingly. The characteristics of each cluster 
employed are its 1) 99.9% MLD CI, 2) average MLD, and 3) average 
depth of non-MLD ENs. Initially (top green row of Fig. 4), the overlap 
among the MLDs of the three clusters is determined. Subsequently, 
clusters containing ENs whose MLD represents bathymetry are identified 
by assessing (lower green row of Fig. 5) if a cluster is “narrow” (i.e., well- 
defined) or “highly variable” as determined by the Bathy/NotBathy 
tolerance hyperparameter (Table 1). Table 2 presents details and 
rationale for each rule and Fig. 5 presents exemplar frequency 
distributions. 

Finally, soundings for a tile whose depth falls within BDI are classi
fied as Bathy and the other soundings classified as NotBathy. 

Each tile’s CHRT-ML classification was cross-tabulated with the 
NOAA reference classification and various statistics calculated to assess 
agreement:  

• Global Accuracy (GA – % agreement over all classes) 
• True Positive Rate/Producer’s Accuracy for Bathy (TPR/PAB – Pro

portion of NOAA Bathy correctly identified)  
• True Negative Rate (TNR – Proportion of NOAA NotBathy correctly 

identified)  
• False Positive Rate (FPR – Proportion of NOAA NotBathy incorrectly 

identified as Bathy)  
• False Negative Rate (FNR – Proportion of NOAA Bathy incorrectly 

identified as NotBathy)  
• User’s. Accuracy for Bathy (UAB – Proportion of CHRT-ML-classified 

Bathy that NOAA classified as Bathy. 

The FNR is most important for real-world hydrographic charting. 
Whereas the TPR/PAB is a conventional measure of classification ac
curacy, the UAB measures the confidence that the soundings being used 
to develop a chart, for example, are truly Bathy. (See Congalton and 
Green (2019).) 

4. Results 

Because it became apparent that tile characteristics strongly 
impacted Bathy/NotBathy classification accuracy, each of the 103 tiles 
was denoted as being one of seven “types” (Fig. 6) based on the presence 
of certain features or dominance of certain substrates: 1)“Normal”, 2) 
Reef and Channel, 3)Reef only, 4)Sparse Bathy (Less than 0.5% of total 
NOAA soundings are Bathy), 5)Infrastructure only (human infrastruc
ture such as piers or docks present), 6)Channel only, and 7)Reef, 
Channel, & Infrastructure. 

Individual examination of sparse Bathy tiles (orange dots in Fig. 7) 
indicated all were located in deep areas at the limits of LiDAR pene
tration. For all but one sparse bathy tile, all accuracy metrics were 
extreme – very high (near 100%/1.0) or very low (near (0%/0.0). This 
relates to two factors. First, in deeper areas sparse Bathy soundings are 
usually too spatially dispersed for CHRT to form a Bathy depth hy
pothesis that would be identified as the MLD for an EN. Second, even if 
some ENs have Bathy MLDs, they are not sufficiently numerous to form 
their own k-means cluster and are absorbed into a larger cluster deter
mined to not contain Bathy MLDs. Effectively the BDI definition ignores 
the presence of Bathy MLDs and soundings. The result is that all Bathy 
soundings are either erroneously assigned to NotBathy (if the erroneous 
BDI is relatively narrow), or to Bathy along with many soundings that 
are actually NotBathy (if the erroneous BDI is relatively wide). The “too 
narrow” BDI produces high global accuracies, TNRs, FNRs, and UABs, 

Table 1 
Tuning parameters for CHRT-ML.  

Parameter Value 
Employed 

Description/Function CHRT-ML 
Sensitivity 

Minimum depth 
/ Maximum 
depth in m 

− 1.5 (above sea 
level) / 20 m 
(below sea level) 

Defines the depth interval 
in which individual true 
Bathy soundings can be 
expected to be found. 

Low 

Minimum 
number of 
MLD 
soundings 

2 Eliminates unstable MLDs 
from clustering. 

High 

Minimum 
cluster 
overlap in m 

0.02 Replaces an absolute 
definition of cluster 
“overlap” with a fuzzy 
tolerance. 

Low 

Bathy/NotBathy 
tolerance in 
m 

0.4 Defines the minimum 
difference that must be 
observed between the 
mean depth of the MLD 
hypothesis and the non- 
MLD hypotheses to 
conclude Bathy ENs are 
present in a cluster. 

Medium  
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but low FPRs, and TPRs/PABs; the “too broad” BDI produces the 
opposite. Sparse Bathy also produces erroneous estimates of mean depth. 
This reinforces the a priori need to identify tiles at the limits of LiDAR 
penetration. 

Four of the five infrastructure tiles (red dots in Fig. 7) had relatively 
high accuracy. Fig. 8 shows the anomalous infrastructure tile. The 
reference NOAA classification apparently identified Bathy soundings 
based on the infrastructure present rather than depth alone. Hence the 

Fig. 4. Flow chart of decision rules to determine the shallow limit of the Bathymetric Depth Interval (BDI). “CI” is confidence interval. Colors in round-edged boxes 
represent the deep (black), mid-depth (light blue), and shallow (bright blue) clusters as shown in Fig. 5. 

Fig. 5. Exemplar frequency distributions for different BDI rules (Fig. 4; Table 1). Red lines represent the derived BDI (dashed lines) and the cluster on which the 
shallow limit is based (solid lines). Black, light blue, and dark blue lines represent deep, mid-depth, and shallow (bright blue) clusters, respectively. Rule heading 
values are the number of tiles to which a rule was applied. 
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disagreement in the NOAA and CHRT-ML classifications is not due to 
CHRT-ML failure. 

The relatively high accuracy for 12 of the 13 Reef and Channel tiles 
(dark blue dots in Fig. 7) suggests that the CHRT-ML classifier success
fully addresses the problem of two bathymetric depth tiers (plus ocean 
surface) illustrated in Fig. 2. The anomalous tile (FNR of 0.8; Fig. 7c) is 

traversed by a relatively deep channel (Fig. 9). This suggests that CHRT- 
ML performs well unless channel slopes are “too steep” and the range of 
depth is “too large.” Interestingly, such tiles may also be problematic for 
the NOAA classifier; relatively few Bathy soundings were extracted in 
the deeper southwest portion of the channel (Fig. 9b). 

CHRT-ML performed reasonably well on most of the 11 Reef tiles 
(mauve dots in Fig. 7) despite depths less than 2 m. Fig. 10 shows the 
Reef tile on which CHRT-ML performed worst – most notably in the 
shallowest southeast area (Fig. 10c). A comparable shallow-to-deeper- 
water transition zone was also present in three poorly performing 
Normal tiles (green dots in Fig. 7). Most misclassification – Bathy false 
negatives especially – on these tiles occurred near such depth transition 
zones. 

CHRT-ML performs reasonably well for the remaining Normal tiles 
(green dots in Fig. 7), lone Channel tile (light blue dot in Fig. 7), and lone 
Reef, Channel, and Infrastructure tile (black dot in Fig. 7). For these tiles 
the average global accuracy is about 90%, average TNRs and TPRs about 
0.90, and average FNRs and FPRs near 0.05. Also encouraging for 
chartmakers is that for the non-anomalous tiles the average UAB is about 
0.90. Moreover, although low accuracy values for the anomalous tiles 
may have been caused by poor CHRT-ML performance, they may 
alternatively relate to uneven quality of the NOAA reference classifica
tion. Fig. 8 provides an (admittedly extreme) example. Exploring the 
spatial and statistical structures of misclassified soundings as suggested 
by Lowell et al. (2020) might provide insight into the cause(s) of 
misclassification. 

CHRT-ML produced comparable results for the validation/”test” data 
set (Fig. 11). CHRT-ML performed well for the Normal tiles sampled, all 
of the Reef tiles, and all but one of the Reef and Channel tiles (Fig. 11c 
FNR of 0.8). Visual examination of this tile suggested the presence of a 
deeper channel than the one in Fig. 9 that produced comparable accu
racy values. On both tiles the deepest k-means cluster did not overlap 
with the two shallower clusters; such clusters are usually formed when 
only the deep cluster contains Bathy ENs. For the single sparse Bathy tile 
sampled, CHRT-ML performed better than expected. The erroneous 
classification of many NOAA Bathy soundings produced an FNR of about 
0.40 that was better than for many of the sparse Bathy tiles in the 
development data set. Overall, therefore, it was concluded that CHRT- 
ML performed comparably for the development and validation data sets. 

5. Discussion 

This work was undertaken to evaluate the potential operationalisa
tion of a previously developed proof-of-concept method of extracting 
bathymetry from LiDAR point clouds. In addition to accuracy, process
ing time is another operational consideration. Unsurprisingly processing 
time for each tile increases with the number of soundings (Fig. 12). 
Extrapolating the results in Fig. 12 suggests that, using the computing 
resources employed herein, it would take about 65 days to process all 
1100 tiles. This processing time could be shortened by using enhanced 
computing resources as well as by improving existing software code. 
Though no time comparisons are provided relative to NOAA’s existing 
processing methods, it is notable that CHRT-ML time is computational as 
opposed to NOAA’s that requires considerable human input. 

Another advantage of CHRT-ML is the elimination or at least 
reduction of the need for calibration data. The 3-cluster approach 
embedded in CHRT-ML is underpinned by an understanding of the 
interaction of LiDAR reflectance, shallow water geomorphometry, data 
characteristics, and ML algorithm behaviour. Hence adapting CHRT-ML 
to other areas should at most require a relatively small amount of 

Table 2 
Explanation of rules that determine the shallow limit of the bathymetry depth 
interval (BDI). (See also Figs. 4 and 5).  

Rule Primary 
Condition 

Sub- 
condition 

BDI 
Shallow 
Limit 

Rationale Number 
of Tiles1 

A No overlap 
between 
deep and 
mid-depth 
clusters 

NA Shallow 
limit of 
99.9% 
MLD CI of 
deep 
cluster 

Shallow and 
mid-depth 
clusters 
represent 
ocean surface 

17 

B Only deep 
and mid- 
depth 
clusters 
overlap 

Mid-depth 
cluster does 
not contain 
Bathy ENs 

Shallow 
limit of 
99.9% 
MLD CI of 
deep 
cluster. 

Mid-depth 
cluster is 
noise. 

0 

C  Mid-depth 
cluster does 
contain 
Bathy ENs. 

Shallow 
limit of 
95% MLD 
CI of mid- 
depth 
cluster. 

Bathymetry 
present on the 
tile is 
relatively 
variable. 

26 

D All three 
clusters 
overlap 

Mid-depth 
cluster does 
not appear 
to contain 
Bathy ENs. 

Shallow 
limit of 
95% MLD 
CI of mid- 
depth 
cluster. 

High 
variability or 
few ENs in the 
deep cluster; 
mid-depth 
cluster is more 
reliable than 
deep cluster. 

3 

E  Deep cluster 
is narrow/ 
highly 
certain 

Shallow 
limit of 
99.9% 
MLD CI of 
the deep 
cluster 

Deep cluster is 
“narrow”; mid- 
depth cluster 
variable 
suggests water 
column noise 

13 

F  Mid-depth 
cluster 
contains 
Bathy ENs, 
but the 
shallow 
cluster does 
not 

99.9% 
MLD CI of 
the deep 
cluster 

Mid-depth 
cluster is 
broad and 
noisy 

4 

G  Mid-depth 
cluster 
contains 
Bathy ENs; 
shallow 
cluster does 
not 

Shallow 
limit of 
95% MLD 
CI of the 
mid-depth 
cluster 

Mid-depth 
cluster is 
narrow/ 
reliable 
suggesting 
mid-depth 
cluster truly 
does contain 
Bathy ENs 

11 

H  All three 
clusters 
contain 
Bathy ENs 

Shallow 
limit of 
95% CI of 
the 
shallow 
cluster 

Multiple 
statistically 
identifiable 
depths on this 
tile 

29  

1 The number of tiles whose BDI shallow limit was determined by this rule. 
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reference data for verification rather than exhaustive numerical opti
misation. Should CHRT-ML be found to perform poorly in other areas, 
adjustment of CHRT-ML’s tuning parameters (Table 1) may suffice for 
successful adaptation. 

An avenue for future research might be the use of adaptive tuning 
parameters. These might be based on readily identifiable a priori factors 
such as “local area type” or based on sounding metadata such as 
described in Lowell et al. (2020). If successful, the potential disadvan
tage of increased processing time might be compensated for by accuracy 

improvement. 
Adaptive tuning parameters might also facilitate continual process

ing. CHRT-ML was developed for 500 m-by-500 m data tiles. Being able 
to process airborne LiDAR by flightpath rather than tile would eliminate 
the need for pre-processing segmentation into tiles although issues of 
flightpath overlap would have to be addressed. Continual processing 
might be achieved by progressively segmenting and processing portions 
of a flightpath including adjusting tuning parameters. The use of over
lapping segments might provide comparative classifications that would 

Fig. 6. Number of tiles by type.  

Fig. 7. Accuracy metrics for the development (“train”) dataset.  
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improve accuracy and facilitate continuous improvement. 
A final potential avenue of future research is assessment of the ac

curacy of depth maps/charts produced by soundings classified as Bathy. 
It is more useful for navigation to achieve various international charting 
standards (IHO 2020) than it is to produce 100% accurate Bathy/Not
Bathy classifications. Analysing the ability of CHRT-ML to produce ac
curate nautical charts would also support continuous improvement. 

6. Conclusions 

Three major contributions of this work are identified. First, not only 
has a LiDAR classifier for shallow-water bathymetry been developed, 
but operational considerations of robustness, accuracy, and processing 
time have been evaluated. Second, the classifier does not require 
ground-truth data for calibration as do most remote sensing-based 
methods (e.g., Lyzenga et al. 2006; Pacheco et al. 2015). Thus CHRT- 
ML supports a seamless workflow from data ingestion to Bathy/ 

Fig. 8. Anomalous “Infrastructure” having a dock/pier. a. GoogleEarth™ imagery. Soundings (blue) classified as Bathy by (b.) NOAA and (c.) CHRT-ML. (A random 
sub-sample of soundings is displayed to improve interpretability.) 

Fig. 9. Anomalous “Reef and Channel” tile a. GoogleEarth™ imagery. Soundings (blue) classified as Bathy by (b.) NOAA and (c.) CHRT-ML. (A random sub-sample of 
soundings is displayed to improve interpretability.) 

Fig. 10. Distribution of Bathy soundings for a poorly performing “Reef” tile. a. GoogleEarth™ imagery. b. Soundings (blue) classified as Bathy by NOAA and (c.) by 
the CHRT-ML approach. (A random sub-sample of soundings is displayed to improve interpretability.) 
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Fig. 11. Accuracy metrics for the validation (“test”) dataset.  

Fig. 12. Processing time for each tile relative to the total number of soundings.  
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NotBathy classification reliant only on the data being analysed. Third, 
the analyses presented provide a means of identifying potentially 
problematic tiles for a more detailed a posteriori examination. Opera
tionally, an a priori determination of tile type could be made or tile and 
sounding metadata analysed. For example, tiles with a decrease in 
soundings whose depth approaches the limit of LiDAR penetration, or 
that are “Reef and Channel” tiles, or that produce a channel-based 
pattern (e.g., Fig. 2c or Fig. 9c) might warrant an a posteriori evalua
tion of classification accuracy. 
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